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We propose an original device that can
protect quantum key distribution (QKD)
systems from the effects of intense laser
radiation. Carbon nanomaterials dis-
persed in a polymer can be used as a fuse
that interrupts key distribution when Eve
tries to hack the system by high-power
laser emission. Moreover, it saves system
components from laser damage.

In the modern world, more and more atten-
tion is being paid to QKD systems. From a the-
oretical point of view, they are able to ensure
complete security of information transmission.
However, the real equipment is not perfect, so
various channels of information leakage may oc-
cur.

One of the main security issues of QKD sys-
tems is the protection against light-injection at-
tacks. These include the Trojan-horse attacks
[1], laser-seeding attack [2], laser-damage attack
[3], and induced-photorefraction attack [4].

Here we demonstrate an optical element that
is able to provide sufficient protection for equip-
ment from this type of attack. It is a car-
boxymethylcellulose film with dispersed single-
walled carbon nanotubes (CNT-CNT) [5]. Once
exposed to powerful laser radiation, it behaves
as a safety fuse. When placed at the exit of a
QKD transmitter, it disconnects the communi-
cation line. Thus an attacker Eve will not be able
to receive any information about secure keys or
damage the QKD system further.

Experimental setup and testing proce-
dure. For experiments, we assembled about ten
samples of our optical fuse. The fuse has a sim-
ple design that enables a high reproducibility of
manual production. It consists of the CMC-
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FIG. 1. The design of optical fuse (not to scale).
The sample of CMC-CNT is between the ferrules
of the connectors inserted into a standard bulkhead
adapter. Diameter of the fiber a = 125 µm, ferrule
diameter b = 2.5 mm, sample thickness h = 5 µm.

CNT composite film squeezed between stan-
dard FC/UPC fiber connectors with single-mode
fiber, as shown in Fig. 1. Its attenuation at
QKD operating wavelength of 1550 nm is typ-
ically 3.6 dB.

The experimental setup simulates the light-
injection attacks on QKD source. We used a
1550-nm high-power cw laser as Eve’s source,
with a power tunable up to 5.5 W.

Based on the measurements of the transmit-
ted power, we determined the attenuation of the
samples under exposure. Moreover, we analysed
the mechanisms of changes in the optical char-
acteristics of the samples as a result of the ex-
posure. The phase composition of the samples
was studied by Raman spectroscopy and optical
microscopy.

Testing results. The sample’s optical prop-
erties depend on the incoming power. There is
no change up to 70–100 mW, but when exposed
to a power of 100 mW or more, an irreversible
increase in attenuation occurs in all the samples.
We show that changes in optical characteristics
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are caused by a change in the phase composition
of the sample.

At power higher than 1 W, our device ignites
a fiber-fuse (a runaway destruction of the op-
tical fiber propagating towards the light source
[6]). To prevent it propagating through the com-
munication line and destroying it, an adiabatic
taper fiber device may be used [7].

In addition, we have installed our CMC-CNT
prototype device at the transmitter exit in a lab-

oratory QKD system and evaluate its effect on
the main parameters of QKD operation, includ-
ing QBER and key rate. The QKD system is a
plug-and-play two-pass phase-coded QKD auto-
compensation system running the BB84 proto-
col. We show that this does not adversely affect
system normal operation.

Summary. We have made a prototype of the
system element and recommend it for protection
against attacks with injection of laser radiation
into QKD systems.
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