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I. OBJECTIVES

This lab work teaches the students the design of optical quantum random number generators (QRNGs) and analysis
of their characteristics, including the randomness of a bit sequence. Our lab QRNG is based on the interference of
laser pulses. During the exercise, the students learn to operate laboratory instruments (oscilloscope, pulse generator,
etc.).

II. PREREQUISITES AND OUTLINE

This lab exercise requires a basic understanding of random number generators (RNGs) classification and principles
of their operation, including the term “entropy” in context of randomness estimating in the information theory. If
you feel misunderstanding regarding these issues, here is an overview for background reading [1].

You will adjust the quantum random number generator based on pulse interference and extract and analyze a raw
bit sequence. The implemented optical scheme simulates a commercially distributed QRate QRNG (Patent No US
11055404 B2 [2]). The must-read paper for successfully carrying out this lab exercise is [3]. It is appended to this
manual. Please read it before you come to the lab.

In addition, you might take a look at papers [4, 5]. The paper [4] describes the basic operating principle of the
optical scheme under study, and the papers [3, 5] present QRNG analysis and testing methodologies.

A. Outline

During this lab, you will learn how to analyze quantum RNG on the example of an optical scheme based on
interference of laser pulses. The work progresses in the following four stages.

1. Setting up of hardware realization and measuring the output interference signal and its probability distribution.

2. Discussion of the underlying physical model and assumptions.

3. Data processing to extract bit sequences.

4. Statistical test of the output bit steams.

B. Questions for preparation

To check your understanding of the background, try answering the following questions. If you can not answer them,
you need more preparation before you start the lab. Do not include your answers into the lab report.

– For a fiber-optic Mach-Zehnder interferometer with a path difference L, what pulse repetition rate fp should be
set for the first laser pulse to interfere with the second? With the third? With the n-th? How does the answer
change for the Michelson interferometer?

– If the frequency in the unbalanced interferometer does not match the above condition, what is the intensity
waveform at the output? Draw it.

– Should one consider polarization effects in Michelson interferometer?

– What is the source of randomness in QRNG based on the interference of laser pulses? How can you prove that
the device generates true randomness?

– What physical quantity is measured to derive the true randomness in the lab work?

– What is the shape of the probability distribution of interference signal in the ideal case? What effects affect
this distribution?
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III. THEORY

A. Introduction into random number generators

Random numbers are a fundamental resource in science and engineering. They are essential for such important
applications as cryptography, simulation, coordination in computer networks, etc. There are two main approaches to
produce random numbers. The first one is based on computational deterministic algorithms. As any algorithmically
generated sequence cannot be truly random, these methods are called pseudorandom number generators (PRNGs) [1].
PRNGs are popular in some applications owing to high-speed, low cost, and reproducibility; however, they usually
cannot provide unpredictability, which is requisite for sensitive fields like information security.

Another approach to RNG is utilizing some unpredictable or, at least, difficult to predict physical process, measur-
ing it to create a sequence of random numbers. These are called true random number generators (TRNGs). Quantum
number generators are a particular case of physical TRGNs, whose output is the result of quantum events. QRNGs
leverage the probabilistic nature of quantum mechanics to generate unbiased sequences of random numbers from
fundamentally non-deterministic processes. Various physical phenomena have been employed in QRNG implementa-
tions, including measurements of radioactive decay, absorption of single photons, vacuum noise, energy fluctuations
of stimulated Raman scattering, and superposition states of single photons.

The particular physical quantity we will use in this class is the phase of electric field in the laser pulses. This quantity
is determined by quantum fluctuations of the vacuum, which are truly random and have a very short correlation time.

The theory part of the lab manual is organized as follows. First, a brief explanation of randomness is given, and
requirements on random numbers are derived. Next, we discuss the QRNG certification procedure. Then, the structure
of our QRNG device is explained. Finally, we overview test tools to probe the quality of random bit sequences.

B. Requirements on random numbers

Let us first understand what it means when a number is random. While it may not be immediately apparent,
randomness is a highly non-trivial concept. Here is a simple explanation.

The attribute of being random applies more correctly to a sequence of numbers—without loss of generality, assuming
just the bit values 0 and 1—rather than to individual numbers. Randomness is strictly related to the lack and, ideally,
impossibility of predictability . A simple test can be used to see if a sequence of numbers is random or not: compress
it using zip compression on a PC. If you can compress a file of data, and it shrinks in size, it means that the compression
tool found a recurring pattern in the data, removed redundant information, and plans to add it back later during
decompression. There is predictability in the data, which therefore is not random.

In this sense, it might be better to speak of the randomness of a source. Ideally, one would like to have access
to a source that produces random-bit strings, where the values of the bits can be described by independent and
identically distributed (i.i.d.) random variables: the value of each bit is independent of past or future bit values,
and it is 0 or 1 with the same probabilities as the other bits. The best scenario would be one where each bit is
unbiased–that is, equally likely to be 0 or 1.

It is nearly impossible to establish whether a source of bit strings is actually random. As long as an i.i.d. source
is not constant, that is, as long as it does not produce exclusively 0s or 1s, any output bit string of whatever fixed
length can be generated, including those that contain only 1s or only 0s. Indeed, in the case where the i.i.d. source is
unbiased, any string of the same length is equally probable. For example, the strings 00000, 11111, and 01001 are all
equally probable.

Here, then, is the challenge: suppose our source produces a specific string. How can we be at least confident that
the source is actually random, if any string is equally likely? The answer is that there are other properties of the
string that we can analyze. For example, we can try to identify patterns or global properties, like the weight of the
string, that is, how many 1s it contains. While all strings may be equally likely, their weight is not. If the source
is really i.i.d., then we expect that, for long enough strings, with overwhelming probability, we will observe a string
that is typical, that is, in the case of an unbiased source, that the number of 0s and 1s in it will be about the same.
As an example of a pattern, imagine a source that alternates 0s and 1s. Considered individually, the bits may appear
identically distributed and unbiased, but they are not independent: knowledge of the value of one bit and of the rule
allows one to reconstruct all the other bits in the ordered string. This string is actually highly compressible.

The validation, or rather, corroboration of random sources, is typically performed with standardized tests that look
for signs that the strings it produces exhibit some kind of pattern, ranging from an excess of 0s or 1s (that is, a bias)
to correlations between various locations of the string.

One important measure of randomness is entropy . Roughly speaking, it is the amount of information (measured
in bits) necessary to describe a certain string among the set of all possible strings, or, equivalently, the amount
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FIG. 1: Quantum RNG based on unbalanced Michelson interferometer. A pulse generator directly drives a
distributed-feedback laser diode LD with electrical current. Cir, fiber-optic circulator; BS, fiber-optic beam-splitter;

DL, delay line made of single-mode fiber; FM, Faraday mirror; D, fast p-i-n photodiode; Osc, oscilloscope.

of information gained when it is communicated which string was actually generated among the many possibilities.
Roughly speaking, bit strings that are not random have limited entropy and can be described with fewer bits than
the bit string contains. In the compression example above, this means that a file with high entropy will not compress
and will remain the same size, whereas a file with low entropy will compress to a smaller file size.

Generally, the requirements on the random numbers depend on their intended application. Common criteria are
that the random numbers should have good statistical properties, including uniformity and scalability. And for
sensitive applications, their forward and backward unpredictability is indispensable. It means that the knowledge
of subsequences of random numbers shall not enable to compute predecessors or successors or to guess them with
non-negligible probability.

C. QRNG certification

A certification procedure should verify whether the QRNG satisfies the above-mentioned requirements. For statis-
tical properties of generated bit sequences, many test suites are developed. However, they can never prove whether
a sequence is unpredictable and answer whether the device generates true randomness. From the other side, using a
quantum quantity as the entropy source does not guarantee good statistical properties of the bit sequence. Moreover,
the QRNG device includes a post-processing stage, besides the entropy source. The measurement equipment and
post-processing algorithms will also affect the statistical properties of the final bit sequence.

To validate all these requirements, the certification procedure of the physical RNG includes at least the following
four stages [6].

– Discussion of the underlying physical model and assumptions.

– Examination of post-processing calculation algorithms.

– Inspection of hardware realization.

– Statistical test of the output bit steam.

D. Physical principle for entropy generation in QRNG based on interference of laser pulses

The schematic of our QRNG is shown in Fig. 1. Driven by a pulse generator, a distributed-feedback laser diode
(LD) operates in gain-switching mode. It emits pulses at a wavelength λ = 1550 nm and a repetition frequency fp.
The pulses pass from the circulator (Cir) port 1 to port 2 into the Michelson interferometer. They divide at a coupler
(BS), reflect from Faraday mirrors (FMs) and then recombine at BS again. Passing from circulator port 2 to port 3,
the interference signal is detected in a time-resolved way by a photodiode (D). However, if a delay line of a length L
is introduced into one of the interferometer arms, half of the original pulse arrives with a time delay ∆t = 2L

c (hereon
we refer to c as the speed of light in fiber, which is about 0.2 m/ns).
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By setting fp = 1/∆t, one can thus make the first pulse interfere with the one following it. The light intensity at
the photodetector can then be calculated as

I(t) = |E1(t) + E2(t)|2, (1)

where E1 and E2 are the laser field strengths of the two interfering laser pulses. These can be represented in the form

E(t) = A(t) exp[i(ωt+ φ)], (2)

where A(t) is the pulse’s envelope varying much slower than the field oscillation frequency ω = 2π
λ c. Substituting the

field strengths (2) into (1) yields

I(t) = |A1(t) exp[i(ωt+ φ1)] +A2(t) exp[i(ωt+ φ2)]|2 = A2
1(t) +A2

2(t) + 2A1(t)A2(t) cos(φ1 − φ2). (3)

For the simplicity of the further derivations we will assume that the two pulses have identical shapes and amplitudes,
i.e., A1(t) = A2(t) = A0. Equation (3) then takes a shape of

I(t) = 2A2
0(t)[1 + cos(φ1 − φ2)]

or

ξ =
I(t)

A2
0(t)

= 2(1 + cos∆φ),

(4)

where normalized intensity ξ ranges between 0 and 4 with respect to the relative phase ∆φ = φ1 − φ2 of the laser
pulses. With the latter quantity, the quantum randomness comes into play. The laser radiation arises from amplified
spontaneous emission within the cavity, a process determined by the quantum fluctuations of the vacuum. It is this
very phenomenon that gives a random nature to the phase of electric field within the pulse. If the two consecutive
pulses arise from different photons, their phases are uncorrelated and uniformly distributed over [0, π), and thus so
is their difference, i.e., ∆φ ∼ U(0, π). It can then be shown that the probability distribution (or probability density
function, PDF) of ξ is

F (ξ) =
1

2π

1√
1− (0.5ξ − 1)2

, ξ ∈ [0; 4]. (5)

This simple physical model describes theoretically ideal case. Real-world PDFs differ from it significantly due to
practical imperfections of measurement equipment and finite coherence of laser pulses. Considering noises of the
photodetector in the model gives PDF shown in Fig. 2a. Here, the singularities at the interval’s end are damped,
resulting in a bimodal and slightly broadened distribution. And Fig. 2b shows the experimental PDFs that are even
worse compared to Fig. 2a. Moving of the peaks to the middle of PDF results from worse interference visibility owing
to the next effects: chirp, jitter, and relaxation oscillations of laser pulses. Chirp is the frequency modulation of
the pulse, jitter means fluctuations in pulse generation time, and the relaxation oscillation refers to small oscillations
in which the laser power and laser gain are coupled to each other around their steady-state values. Their presence
is associated with laser dynamics and is intrinsically by nature when a semiconductor laser operates in a gain-
switched mode. To improve interference visibility, some techniques are realized. For example, experimental PDFs of
the interference signal in Fig. 2b are measured for the same pulse source without (filled triangles) and with (filled
circles) dense-wavelength division multiplexing filter. Here, an optical filter improves spectral matching of the pulses
improving thus their interference.

Knowing the practical PDF of intensity, one can then generate the random bit sequence in the following way:

1. Find the value Imid that divides the distribution F (I) into two parts of equal area under the curve.

2. Record the sequence of pulses from the interferometer, assigning the bit values according to the integral intensity
I of each pulse in the following fashion

b =

{
0, if I ≤ Imid

1, otherwise.
(6)

Discussion of underlying quantum physics [4]. The method operates on the field within a single mode of a
semiconductor diode laser. As shown in Fig. 3, the laser is first operated far below threshold, producing simultaneously
strong attenuation of the cavity field and input of amplified spontaneous emission (ASE). This attenuates to a negligible
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FIG. 2: Probability distribution for the interference: (a) modeling results for pulses with uniform relative phase and
(b) real-life measurements [5].

FIG. 3: Generation of amplified vacuum within the laser cavity. (a) The LD is first taken below threshold, to
attenuate the cavity field to a weak thermal state (in red), independent of its previous value (in blue). (b) The LD is

then taken above threshold, so that phase-insensitive amplification brings the field amplitude to a level fixed by
saturation, while the phase retains the random thermal-state value [4].

level any prior coherence, while the ASE, itself a product of vacuum fluctuations, contributes a masking field with a
true random phase. The laser is then briefly taken above threshold, to rapidly amplify the cavity field to a macroscopic
level. The amplification is electrically-pumped and thus phase-independent. Due to gain saturation, the resulting field
has a predictable amplitude but a true random phase. The cycle is repeated, producing a stream of phase-randomized,
nearly identical optical pulses. Interference of subsequent pulses converts the phase randomness into a stream of pulses
with random energies that is directly detected and digitized.

E. Randomness extractor

Noise signal originating from quantum fluctuations is in principle unpredictable. However, in many applications,
random numbers are required to be not only unpredictable but also uniformly distributed. However, raw bits
from the digitized noise signal typically are non-uniformly distributed and thus cannot be directly used. To form a
complete random number generation scheme, post-processing is required.

Randomness extraction is an essential process required to generate high-quality random numbers that are uncorre-
lated and uniformly distributed. The central part of the randomness extraction is usually an algorithm known as the
randomness extractor. The randomness extractor receives a statistically weak binary stream as input, and generates
uniformly distributed random bits at its output.
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FIG. 4: Von Neumann randomness extractor. A stream of biased bits is divided into bit pairs. The algorithm
discards all 00 and 11 pairs, and makes the mapping 01 → 0, 10 → 1. The resulted stream will have equal

probability of 0s and 1s.

As an example, the earliest randomness extractor was Von Neumann extractor (Fig. 4). The algorithm receives
the biased stream as input and divides the stream into pairs of bits. The output stream of such an algorithm is
guaranteed to have uniform distribution between 0s and 1s. This extractor is only suitable for a biased stream of
independent bits of independent bits. If correlations exist between consecutive bits in the stream, this method is no
longer applicable. Also, the algorithm is not considered efficient, as more than 75% of the bits from the input are lost
while there is still entropy remaining available.

Many other implementations of randomness extractors have been reported, such as Trevisan’s extractor [7], Toeplitz-
hashing extractor, and random-matrix multiplication [8]. For implementations of random number generators, various
families of cryptographic hashing functions are often adopted, such as secure hashing algorithms (SHAs) and advanced
encryption standard (AES) hashing. These algorithms are usually carefully designed and have good performance.
However, most cryptographic hashing functions are complicated and require lots of computational resources. This
could be a limiting factor when one is pushing for a higher rate of random number generation.

F. Statistical test

Besides the generation of random numbers, it is also important to have ways of testing them. Lots of statistical tests
have been created to assist the testing of random number generators. Some of the most famous test suites include
NIST Statistical Test Suite and Diehard/Dieharder Suite by Robert G. Brown. Each of these test suites consists of
dozens of carefully designed tests trying to probe possible statistical anomalies in the subjects, and they are often
used to certify the performance of newly designed random number generators.

In this lab exercise, you will use NIST SP800-22 test suite “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications”. It consists of 15 tests and explicitly defines recommendations
and guidelines. Table I describes a bit sequence property that is verified with the corresponding NIST test [9, 10].
Each statistical test is formulated to test a specific null hypothesis (H0). The null hypothesis under test is that the
sequence being tested is random. Associated with this null hypothesis is the alternative hypothesis (Ha), which is
that the sequence is not random. For each applied test, a decision or conclusion is derived that accepts or rejects the
null hypothesis, i.e., whether the bit sequence is (or is not) random [10].

Each test is based on a calculated test statistic value, which is a function of the data. Then, it is used to calculate a
P-value that summarizes the strength of the evidence against the null hypothesis. For these tests, each P-value is the
probability that a perfect random number generator would have produced a sequence less random than the sequence
that was tested, given the kind of nonrandomness assessed by the test. If a P-value for a test is determined to be
equal to 1, then the sequence appears to have perfect randomness. A P-value of zero indicates that the sequence
appears to be completely non-random. A significance level (α) can be chosen for the tests. If P-value >= α, then
the null hypothesis is accepted; i.e., the sequence appears to be random. If P-value < α, then the null hypothesis is
rejected; i.e., the sequence appears to be non-random. The parameter α denotes the probability of the error that the
sequence produced by a truly random generator is evaluated as non-random (as it was discussed in the first section,
even sequences of all 0s and 1s are equally probable as any other one sequence, and other patterns in the sequence
might take place). Typically, α is chosen in the range [0.001, 0.01].

Practically, NIST test uses 109 bit of random data to examine the distribution of the p-values, which are generated
by repeating a test of 106 bit 1000 times. In this lab exercise, you will conduct tests only for a single bit sequence (of
30–65 k bit). The input data are regarded to be truly random if and only if they pass all the tests of NIST test suite.
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TABLE I: NIST test names paired with descriptions. Adopted from [10].

Test Name Description

Frequency This test determines whether the number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random sequence (0s and 1s should each have a
fraction of roughly 1/2).

Block Frequency Tests that the proportion of zeroes and ones within M-bit blocks are close to M/2.

Runs Tests whether the number of runs of ones and zeros of various lengths is as expected for a
random sequence.

Longest Run Tests sequence to determine if longest run is consistent with the length that would be expected
in a random sequence.

Rank This test checks for linear dependence among fixed length substrings of the original sequence.

FFT Tests the spectral density of a sequence.

Non-overlapping Tem-
plate

Tests the frequency of non-overlapping substrings.

Overlapping Template Tests the frequency of overlapping substrings.

Maurer’s Universal Tests whether or not the sequence can be significantly compressed without loss of information.
Too much compression indicates lack of randomness.

Cumulative Sums Tests for deviations from the mean in the cumulative sum of the sequence.

Linear Complexity Tests the complexity of a sequence, useful for detecting linear dependence which indicates
non-randomness.

Serial Tests whether the number of occurrences of the 2m m-bit overlapping patterns is approxi-
mately the same as would be expected for a random sequence.

Approximate Entropy Compares the frequency of overlapping blocks of two consecutive/adjacent lengths (m and
m+ 1) against the expected result for a random sequence.

Cumulative Sums Determines whether the cumulative sum of the partial sequences occurring in the tested
sequence is too large or too small relative to the expected behavior of that cumulative sum
for random sequences (bits are mapped to −1 and +1). If sums stray too far from zero is
considered non-random.

Random Excursions Determines if the number of visits to a state within a random walk exceeds what one would
expect for a random sequence (bits are mapped to −1 and +1).

Random Excursions
Variant

Detect deviations from the expected number of occurrences of various states in the random
walk.

G. Entropy

Entropy in its many forms offers a convenient way to measure randomness. The different entropies give a math-
ematical measure for surprise (how unexpected a value is). We express entropy in bits, in the information-theory
sense, which is closely related to the concept of thermodynamic entropy but takes it to a more natural formulation
for information processing and communications.

Among possible methods of entropy estimation, in QRNG certification, the min-entropy is typically used. The min-
entropy (in bits) of a random variable X is the largest value m having the property that each observation of X provides
at least m bits of information (i.e., the min-entropy of X is the greatest lower bound for the information content of
potential observations of X). The min-entropy of a random variable is a lower bound on its entropy. The precise
formulation for min-entropy is −log2 max pi for a discrete distribution having n possible outputs with probabilities
p1, . . . , pn. Min-entropy is often used as a worst-case measure of the unpredictability of a random variable.
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IV. EQUIPMENT

1. Educational fiber-optic scheme of Michelson interferometer made by RQC and QRate. It includes a distributed-
feedback laser diode (DFB; Gooch & Housego AA1406) with a custom-made thermoelectric cooler (TEC)
controller connected to it, fiber-optic circulator, fiber coupler 50:50, two Faraday mirrors, and a 25-m fiber
patchcord.

2. Computer with data processing and testing software installed.

3. Signal pulse generator (Highland Technology P400).

4. Photodetector with 15 V AC adapter, pigtailed (Kongtum KT-PR-500M-A-FC-0, 500 MHz bandwidth).

5. Oscilloscope (Lecroy WavePro 735Zi or a similar model).

6. Fiber-coupled variable optical attenuator.

7. Fiber-optic patchcord FC/UPC-FC/UPC.

8. Cables and adapters (50 Ω coaxial cables LEMO 2 pcs., BNC-to-LEMO adapters 4 pcs., 50 Ω SMA to BNC
coaxial cable).

9. Fiber-optic inspection microscope and cleaning kit.

Operator’s manuals and data sheets for the equipment can be found on the course webpage.

V. WORKFLOW

The work proceeds in the following stages.

– Setting up QRNG scheme and data recording for two cases of QRNG operation: correct one and inappropriate
one.

– Extracting a raw bit sequence from oscillorgams (using a provided Python code).

– Applying NIST statistical tests (using a Python implementation of the testing algorithms).

– Preparing your report.

Operating and safety precautions
Do not apply the voltage to equipment, before lab assistant checks all the settings.

Warning

The TEC of LD should be powered on before all the other equipment! If you apply driving electric pulses to LD
without operating TEC, it permanently damages the LD.

Before plugging the 5 V DC power supply into TEC, check its electrical polarity (power connector should be
assembled according to keys “+” to “TIP”).

Warning

Never apply voltage above 2 V to the oscilloscope input channel. The maximum input voltage of oscilloscope
ProLink inputs with 50 Ω impedance is of ±2 V, while the electrical pulse generator has maximum voltage of 10 V.
Be careful, verify that you apply lower voltage to oscilloscope channels.

1. Setting up QRNG device

In this lab work, you will use a pre-assembled optical scheme of the unbalanced Michelson interferometer
(see Fig. 1). To set up its operation as QRNG device, do the following steps.

(a) Calculate pulse repetition rate for the Michelson interferometer to produce the interference of the first
pulse with the second one.

(b) Power on the TEC of DFB laser using 5 V DC power supply.
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FIG. 5: An example of the oscilloscope screen with an oscillogram of synchronized electric channel (top trace) and
interferometer output signal (bottom trace) with perfect time synchronization of interfering pulses.

(c) In the channels’ menu of the electrical pulse generator, set up the following settings.

Trigger: select INTERNAL, customize frequency according to calculation.

Channel to LD: set POLARITY +; VH +10.00; VL 0.00; REL TO T0; WIDTH : 5–10 ns.

Channel to oscilloscope: set POLARITY +; VH +1.00; REL TO T0; WIDTH is arbitrary.

Note: If you set too long pulses in the channel, the frequency decreases automatically. Verify before mea-
surements that the frequency measured by the oscilloscope corresponds to the preinstalled value, within the
accuracy of a quartz clock.

(d) Connect electrical pulse generator P400 output ports configured in the previous step to LD and to the
oscilloscope, corresponding. The second electrical signal will be used for the triggering oscilloscope traces.

Note: for measurement of stable laser pulses, optical signal is traditionally used for triggering, but in the
case of an interference signal, destructive interference will not trigger the measurement.

(e) Connect the oscilloscope to the optical scheme output via the photodiode (optical-to-electrical converter).

Here, you should take into consideration that the optical-to-electrical converter has a limited linear range.
If its peak input optical power is too high, it will saturate and distort the pulse shape recorded at the
oscilloscope. An optical attenuator (either fixed or programmable one) or gap between fiber connectors
can be used to reduce the optical power.

Another pitfall with this optical-to-electrical converter is that the oscilloscope software defaults on using
a bandwidth-limiting filter (“reference receiver” in the probe configuration menu). If you want to see the
real pulse shape at the full converter bandwidth, you must disable this filter in the configuration menu.

See the operator’s manual for the converter if you have questions.

(f) Press the button START at the front panel of the pulse generator to apply electrical pulses to LD and
oscilloscope. In the oscilloscope settings, choose a channel presenting signal from PG for triggering. Set
time and amplitude scales providing one interference pulse in the oscilloscope window. For ease of use, you
might align electrical and optical signals relative each other over the time axis by adjusting delay in PG
channels settings or using different electrical delay lines.

(g) The real frequency (repetition rate) required to observe perfect interference differs a little bit from the
calculated one. Now, you need to make a fine adjustment of the frequency by observing measurement
results in an oscilloscope. Figures 5 and 6 show oscilloscope screens with measurement results after fine
adjustment of pulse generator frequency.

In an oscillogram, you might observe narrow sub-pulses at the beginning of each signal pulse. It is caused
by the absence of interference due to chirp, jitter, and relaxation oscillations, as described in [5].

(h) After fine adjustment, plot a histogram of area measurements. To perform area measurements, select “
Measure” from the channel’s shortcut toolbar buttons or from the top horizontal menu. In pop-up menu,
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FIG. 6: An example of the oscilloscope screen with histogram on pulse area measurements corresponding to QRNG
operation shown in Fig. 5.

FIG. 7: An example of the oscilloscope screen with an oscillogram of synchronized electric channel (top trace) and
interferometer output signal (bottom trace) with perfect time synchronization of interfering pulses. Bias of LD

electrical pumping results in extended correlation time of pulses’ phase.

choose “Area”. Finally, set the Gate of measurement, and in the bottom menu of the measurement settings
among “Actions for Px” choose “Histogram”.

(i) Save a histogram of area measurements and a long pulse trace. In order to obtain a sufficient number of
pulses, first, in the oscilloscope settings, reduce the sampling rate to 2.5 GS/s. Then, extend the timescale
of the screen as much as possible within the selected sampling rate.

(j) Finally, increase the bottom level of voltage applied to LD on electrical pulse generator, VL, from 0 to 4 V.

This should spoil interference statistics. On the oscilloscope, you will observe that the interference signal
intensity tends to duplicate over several successive pulses, as shown in Fig. 7.

Save the data (histogram and a long pulse trace) as in the previous step.

Lab report should contain: diagram of your experimental setup, repetition rate calculation results, oscillograms
presenting several interference pulses and histograms for pulse area measurements for both device settings, con-
ditions of the measurements, and any observations and explanations you deem relevant.
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FIG. 8: Software simulator for measurement and it sequence production. (a) The program calculates area under
each pulse according to selected time gate (selected pulse points). (b) It accumulates a probability density

distribution of measurement events and estimates median area value (or threshold) that divides all the pulses into
two groups, correspond to bit values 0 and 1. (c) Finally, the software produces the bit sequence from the

oscillogram, based on calculated pulse areas using the estimated threshold level.

2. Extracting a raw bit sequence from oscillorgams

The Python implementation of a program to get a bit sequence imitates the measurement and processing parts
of the QRNG device. Figure 8 explains its operation. First, it calculates an area of each signal pulse; then, it
estimates a threshold value to divide the measurement events into two groups corresponding to bit values 0 and
1; and finally, it creates the bit sequence.

You should create two bit sequences, one for the proper operation and one for the incorrect operation of QRNG.

To process your oscillograms, follow these steps.

(a) Open and run the program QRNG-lab.py.

(b) Once you see the interface window (Fig. 9), choose “Select File” to upload oscillogram data (*.csv file)
for processing or drag-and-drop it in the dialog window box. Next, press the button “Select Directory”
and choose a folder where you want to save the processed data. In the dialog box, input the operating
frequency of QRNG setup. Finally, clicking “Start Processing” starts the file handling.

(c) The next dialog window shows ten random pulses (Fig. 10). Firstly, you should check whether the pulses
superimpose on one another. The pulses are scattered along the horizontal axis if you inserted an inaccurate
signal repetition rate in the previous window. In this scenario, break the processing by clicking on the
“Close” button and choosing “Exit” in the pop-up window.
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FIG. 9: Starting window of the program.

(a) (b)

FIG. 10: Window for selecting of time gate for calculations. (a) Initial view. (b) View after selecting/deselecting
points for calculations.

In this window, you could set a time gate of pulses that will be used for the area calculation. To do that,
you select pulse points by clicking on them with the left mouse button. The points of all plotted pulses at
a chosen time will be colored in red. A second click with the left mouse button deselects the points and
colors them in blue.

We recommend you to eliminate points at the beginning of pulses, where the interference is poor.

After finishing the time gate selection, click “Close” button and choose “Continue” in the pop-up window.

(d) Next, the program will show a window threshold level by which it divides the populations of measurements
by two groups correspond to 0 and 1. Record the value, close the window.

(e) The next window shows histogram. Save it, close the window and wait for data saving. The saving finishes
with a massage “Digitized pulses saved successfully”.

3. Make a randomness test of the obtained output data

Use Python implementation of NIST’s SP800-22 test suite.

(a) Open and run the program Main.py.
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(b) Choose “Select Binary Data File” in “Input Data” box. This will open a file dialog where you should select
the earlier prepared file with the bit sequence to be read by the program. The file should contain only one
set of data in binary form.

(c) Run the test suite for both bit sequences. Record P-values, plot them, and compare the results.

(d) Explain the difference in test results for the correct and incorrect operation of QRNG.

Lab report should contain: P-values for correct and incorrect operation of QRNG device and discussion of the
results.
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Abstract: We propose a method for quantum noise extraction from the interference of laser
pulses with random phase. Our technique is based on the calculation of a parameter, which we
called the quantum reduction factor, and which allows for the determination of the contributions
of quantum and classical noises with the assumption that classical fluctuations exhibit Gaussian
distribution. To the best of our knowledge, the concept of quantum reduction factor is introduced
for the first time. We use such an approach to implement the post-processing-free optical quantum
random number generator with the random bit generation rate of 2 Gbps.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Numerous quantum random number generators (QRNGs) based on various quantum effects have
been demonstrated over the last two decades [1]. Among them, QRNGs employing different
phenomena of quantum optics seem to be very convenient, relatively cheap, and, what is more
important nowadays, could provide high random bit generation rates. Although optical QRNGs
are extensively studied by many authors, the problem related to the contribution of classical noise
in such QRNGs is still far from complete. This problem may seem overly pedantic at first glance.
Perhaps for some scientific applications, such as Monte-Carlo simulations, it is. In cryptography,
however, the extraction of purely quantum noise is crucial for secrecy and consequently is of
fundamental importance.
Various approaches to evaluate the ratio between quantum and classical noises in optical

QRNGs have been developed. Thus, in [2], where vacuum fluctuations were amplified using
homodyne detection, the quantum noise contribution was estimated by calculating the difference
between Shannon entropies of the amplified vacuum signal and the photodetector’s dark signal.
The SHA512 hash-function was then employed to extract quantum randomness from the raw bit
sequence. A similar procedure for quantum noise extraction (but with other hash-function) was
carried out in [3], where the interference of laser pulses with a random phase was proposed to
generate random bits. For such a QRNG scheme, the same authors used later another approach
[4], where the min-entropy of a random signal instead of the Shannon entropy was employed
in the randomness extraction procedure. The same method to estimate the min-entropy was
recently used in the optical QRNG of other authors [5], where the interference of pulses from a
couple of gain-switched lasers was detected with balanced photodetector. To extract quantum
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randomness, the authors used then Toeplitz extractor [6,7]. A more sophisticated approach of
quantum noise extraction was used in [8,9], where random bits were generated by using the
interference of a continuous-wave laser radiation in a Mach-Zehnder interferometer. Authors
used the fact that according to [10,11] the quantum noise in their scheme is inversely proportional
to the output laser power P. Recoding the dependence of the photodetector’s voltage variance
on P, they evaluated an optimal output laser power corresponding to the highest value of the
quantum-to-classical noise ratio. The latter was then used to estimate the quantum min-entropy
of the random signal needed for subsequent hashing.
An interesting method to make the correlated raw sequence uniform was proposed in [12],

where authors used a finite-impulse response filter (FIR) to process the QRNG raw output. Such
a filtering fuses bits of differing significances, thus achieving decorrelation of the raw data. Note,
however, that such a processing is insecure in a cryptographic sense, since one can restore the
raw sequence with all its inherent correlations, if the coefficients of the FIR filter are available.
So, additional post-processing (i.e. randomness extraction) should be concatenated to the FIR, if
such a QRNG is intended to use in cryptographic applications.
Another approach for data processing was proposed in [13], where a QRNG based on the

interference of laser pulses was considered in the context of loophole-free Bell tests [14]. Authors
considered the case of partially random bits in the output sequence and proposed the real-time
method to increase its randomness. For this, neighboring bits were added modulo 2 recursively,
i.e. the XOR operation was applied to the output sequence itself. The authors, however, noted
that in case of completely predictable bits such an approach cannot be used. It is shown below
that within our approach those bits that are related to the contribution of classical noise are
(potentially) completely predictable; therefore, such a method is not applicable.

Obviously, there is no single rule to extract quantum noise from the output of the optical
QRNG, particularly because the probability distribution of a random signal is highly dependent
on the optical scheme. The quantum randomness extraction performed in [8] (and discussed
later in detail by these authors in [7]) seems to be the most advanced approach to estimate
quantum-to-classical noise ratio; however, this method is valid only when the interference term of
the optical signal can be expanded into a series of the phase difference ∆Φ. In other words, such
an approach can be applied only when the total phase fluctuations measured by the interferometric
system are much less than unity, i.e., it is suitable only for the interferometers with sufficiently
small time delay between the two arms [8]. Therefore, such method cannot be applied for the
schemes with the interference of laser pulses with random phase [3–5], where ∆Φ does not
generally meet the requirement ∆Φ << 1. An attempt to extract quantum noise from the laser
pulse interference was made in [4] (the same method was employed later in [5]); however, this
approach seems to us not fully faithful, since it takes into account only the non-uniformity of the
probability density function of the random signal, whereas the contribution of classical noise is
not really taken into account. Moreover, it is not clear how to expand the proposed method for
the case when a comparator is used to digitize a random signal instead of an analog-to-digital
converter (ADC).

In the present work, we propose a different approach of the quantum randomness extraction for
the optical QRNG based on the interference of laser pulses. Moreover, we propose a method to
extract quantum noise without post-processing. In the next section, we provide some definitions
that will be used across the paper. In section 3, we discuss main features of the interference
signal and its probability distribution. In section 4, we discuss our method and introduce the
so-called quantum reduction factor, which underlies the proposed approach. Finally, in section 5,
we describe in detail the implementation of our QRNG.
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2. Quantum vs classical randomness

Before discussing the problem of quantum randomness extraction, it is necessary to clarify what
will we mean by randomness. Unfortunately, there is no widely accepted definition of random
numbers. Just recall numerous definitions of random sequences given by D. Knuth [15] to realize
the uncertainty surrounding this problem. Nevertheless, without giving definite conclusion, D.
Knuth gives a recipe stating that a useful definition should contain a short list of properties
desirable for random sequences. We will follow this recipe and formulate the basic requirements
for random sequences in practical applications of our interest, namely in quantum key distribution
(QKD).

The first requirement is that the random sequence should be nondeterministic. Obviously,
pseudorandom number generators producing numerical sequences that appear “random”, does
not satisfy this requirement, since they represent computer algorithms, which are deterministic by
definition. Consequently, this requirement forces the use of physical entropy sources. However,
not any physical entropy source can be considered nondeterministic. Thus, fluctuations of the gas
pressure are generally considered to be a stochastic process essentially because of its collective
nature: it is almost impossible to predict an exact value of the gas pressure in every moment
of time just because it is extremely difficult to solve differential equations and substitute in the
general solution the initial conditions for the velocities and coordinates of all the particles of
the gas. Nevertheless, such fluctuations are fundamentally deterministic in a sense that it is
possible in principle to solve corresponding differential equations and find a precise value of the
gas pressure in any moment of time. We will refer such fundamentally deterministic entropy
sources to as classical. In contrast, electron tunneling through a potential barrier or spontaneous
emission of an atom are fundamentally nondeterministic processes. In fact, one cannot find out
the exact time when the electron tunnels through a barrier or when an atom spontaneously emits
a photon. There is only a finite probability that after the measurement we will obtain a given
result. We will refer the entropy sources based on such phenomena to as quantum, and only
quantum entropy sources will be treated as nondeterministic.
The second requirement is that the entropy source should be fundamentally uncontrollable

by the third party. This just means that the QRNG should be designed in such a way that an
adversary was not able to influence the result of measurements made in the systems. If it is
impossible to exclude completely an impact of an adversary, his influence should be taken into
account, for instance, by the use of postprocessing.

The third requirement is that the physical process used in the QRNG should be unpredictable.
It might seem at first glance that quantum nondeterministic phenomena are automatically
unpredictable, and this requirement is redundant. However, the result of a quantum mechanical
measurement is not necessarily unpredictable in the general case. For example, polarization
measurements with a pair of entangled photons are 100% correlated, if both polarizers are aligned
along the same axis. That is, each photon may be found randomly either in channel (+) or (–)
of the corresponding polarizer, but when photon 1 is found positively polarized, then its twin
companion 2 is also found positively polarized [16]. Such quantum correlations can potentially
be used by an adversary to find out a secret key; therefore, by the source of quantum entropy
we will hereinafter mean a system, in which there are no quantum correlations available for
measurement by the third party.

Summarizing the above, we will refer the nondeterministic, uncontrollable and unpredictable
noise to as quantum noise. The term classical noise, in turn, will be used with respect to
fluctuations, which are fundamentally deterministic in nature and could be controlled or predicted
by the third party.

Finally, let us make a remark regarding the term “truly random”. In cryptography, one usually
deals with uniformly distributed random bit sequences, so “truly random” usually means here
“uniformly distributed” [17,18]. However, most physical entropy sources used to generate random
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signals do not always allow directly obtaining uniformly distributed random bit sequences, since
signal fluctuations are rarely exhibit a uniform probability density function (PDF). Therefore, in
the context of physical RNGs, “truly random” usually means “not pseudorandom” regardless
the form of its distribution. In the framework of the noise classification given above, we will
use below the term “truly random” only with regard to quantum noise. Moreover, to satisfy
cryptography requirements, we will assume that random bit sequences generated by a QRNG are
also uniformly distributed. So, under “truly random” we will understand both “quantum” and
“uniformly distributed”.

3. Probability density function of the interference signal

The optical scheme of the QRNG under consideration allows transforming the laser phase
fluctuations into amplitude fluctuations. For this, a continuous sequence of laser pulses is entered
into an unbalanced interferometer, whose delay line is selected such that the corresponding delay
time is a multiple of the pulse repetition period, so that pulses emitted by the laser at different
moments of time are met at the output of the interferometer. An important requirement for the
operation of this scheme is that the laser should be modulated over the lasing threshold, i.e.,
after each pulse the laser should be switched to the amplified spontaneous emission (ASE) mode
[19,20]. Since most transitions in the ASE mode are spontaneous, phase correlations of the
electromagnetic field are destroyed very quickly. As a result, each new laser pulse appears with
a random phase; therefore, the result of the interference of two laser pulses will be a random
quantity.

Let us make some remarks on the phase randomness in spontaneous emission process. It is well-
known that spontaneous transitions are induced by zero-point oscillations of the electromagnetic
field [21,22]. ASE could be thus treated as amplified vacuum fluctuations; therefore, some
authors [3,4] use the relationship between vacuum fluctuations and spontaneous emission in order
to attribute to latter the properties of vacuum, which is usually considered to be perfectly white,
uncorrelated, and broadband. However, one should be careful when making such a generalization.
In fact, perfect vacuum exhibit continuous set of states, whereas spontaneous emission in a
laser is confined in its resonator with a finite number of modes, which changes the probability
of spontaneous transitions [23]. Although individual spontaneous transitions are uncorrelated,
correlation could exist between the phases of spontaneous emissions in a multilevel systems
[24,25]. Fortunately, in semiconductor laser spontaneous emission is only correlated for a carrier
scattering time that is of order 10−13 s, a negligibly short time; therefore, spontaneous emissions
can be considered to obey Markovian assumption [11]. Due to this (and not just because of the
relation to vacuum fluctuations), one can treat the laser phase noise as quantum noise.
Let us now turn to the question of the interference of laser pulses. Here, we will neglect the

contribution of relaxation oscillations into the pulse shape and will assume that it exhibits the
Gaussian temporal profile. Moreover, we assume that the light in the interfering pulses has the
same polarization. With these assumptions, the integral intensity S̃ of the interference signal can
be written as follows:

S̃ = s1 + s2 + 2η
√

s1s2 cos∆Φ, (1)

where s1 and s2 are normalized integral intensities corresponding to the optical output from the
short and long arms of the interferometer, respectively, η is the visibility, and the phase difference
is ∆Φ = ∆ϕp+∆θ. The phase difference ∆θ is determined by the delay line ∆L and can be written
as ∆θ = k∆Lnω0/c, where n is the refractive index of the optical fiber, ω0 is the central frequency
of the laser radiation, and the factor k = 1, 2 depends on the type of the interferometer (obviously,
k = 1 if the Mach-Zehnder interferometer is used and k = 2 for the Michelson interferometer,
since in this case the pulses pass the delay line twice). The phase difference ∆ϕp = ϕp2 − ϕp1, in
turn, is determined by the initial phases of optical pulses at the laser output.
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As discussed above, the phase of an optical pulse emitted by a gain-switched laser is assumed
to be random. It should be noted here that such an assumption imposes some restrictions on
laser operation, particularly on the pulse repetition rate ωp and on the pump current amplitude
Ip. In fact, at high ωp the light coherence in the ASE mode could be destroyed incompletely
[3,4], such that the phase of subsequent laser pulses will correlate. The gain-switched laser will
require more and more pump current when increasing the modulation frequency, which makes
high demands on a current pulse driver. Moreover, negative correlation can occur between laser
intensity fluctuations for weak excitations [26]. So, one should select the optimal values of the
pump current and the pulse repetition frequency to make the interference random. As an example,
in [4] satisfactory randomness was achieved for ωp

/
2π = 5.825 GHz with the reverse-biased

distributed feedback (DFB) laser at Ip ∼ 100 mA. Below, we assume that all parameters of the
laser operation are set so that the randomness of the pulse phase is not disturbed. Particularly, the
injection current of a laser is assumed to be always modulated over threshold with the modulation
current amplitude not less than the threshold value. The pulse repetition period will be assumed
to be always ωp

/
2π = 2.5 GHz.

It was shown that phase fluctuations in the ASE mode are well described by the Langevin
equations in terms of phase diffusion [11]. Langevin forces driving phase fluctuations can be
shown to be nearly Gaussian, such that random phases of laser pulses ϕp can be assumed to be
distributed according to the normal law with an rms of σϕ . Obviously, the phase difference ∆ϕp

between the two different laser pulses also has a normal PDF with an rms to be σϕ
√
2. The same

applies to the resulting phase difference ∆Φ in Eq. (1). It can be shown (see Appendix) that if
σϕ
√
2 > 2π the PDF of the resulting phase ∆Φ can be defined with high accuracy by

f∆Φ =


1
π , ∆Φ ∈ [0, π)

0, ∆Φ < [0, π)
. (2)

It should be noted that∆Φ could fluctuate under the influence of both quantum and classical noises.
However, due to the fact that ∆Φ is in the argument of the cosine (Eq. (1)), the influence of the
classical component will be completely overlapped by quantum noise, if the rms of the quantum
noise component is greater than 2π. Indeed, the PDF of ∆Φ in this case can be considered
uniform within [0, π) regardless the amount of the classical noise component. Hereinafter, we
assume that the rms of the laser phase diffusion obeys the inequality

√
2σϕ > 2π, such that f∆Φ

can be defined by Eq. (2) and fluctuations of ∆Φ can be thus treated as truly random.
If ∆Φ is distributed according to Eq. (2), whereas s1, s2 and η are assumed to be constant, then

the PDF of the integral signal S̃ is defined by the derivative: f Q
S̃
= (FQ

S̃
)′, where, by definition,

the cumulative distribution function (CDF) FQ
S̃
is given by [27]:

FQ
S̃
(y) =

∫
S̃ < y

f∆Φ(x)dx, (3)

where x stands for the value of ∆Φ and the integration region is given by the inequality
s1 + s2 + 2κ

√
s1s2 cos x < y. Substituting Eq. (2) into Eq. (3) we obtain

f Q
S̃
(x) =

[
π

√
(x − S̃min)(S̃max − x)

]−1
, (4)

where
S̃min = s1 + s2 − 2η

√
s1s2,

S̃max = s1 + s2 + 2η
√

s1s2.
(5)
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We will refer the function f Q
S̃
(x) given by Eq. (4) to as a quantum PDF of the interference signal,

since it is defined solely by fluctuations of ∆Φ, which we agreed to consider quantum. The
function f Q

S̃
(x) for the case s1 = s2 = 1 at different values of visibility η is shown in Fig. 1(a). One

can see that f Q
S̃
(x) tends asymptotically to infinity for ideal destructive (x = S̃min) and constructive

(x = S̃max) interference. The “distance” between the asymptotes

S̃max − S̃min ≡ w∆Φ = 4η
√

s1s2, (6)

we will refer to as the width of the quantum distribution. One can see from Fig. 1 and Eq. (6)
that w∆Φ is decreased when decreasing η.

Fig. 1. (a) Quantum PDF of the interference signal (Eq. (4)) for three different values of the
visibility η (0.6, 0.8, and 1). (b) Monte-Carlo simulations of the signal PDF in the presence
of fluctuation of s1 and s2 in Eq. (1). (c) Monte-Carlo simulations of the signal PDF in the
presence of fluctuation of s1 and s2 and the photodetector’s noise as well.

In addition to fluctuations of ∆Φ one should take into account fluctuations of s1 and s2. The
CDF of the interference signal should be then rewritten as follows

FS̃(y) =
∫

S̃ < y

f∆Φ(x1)fs1 (x2)fs2 (x3)dx1dx2dx3, (7)

where the values of random variables ∆Φ, s1 and s2 are denoted by x1, x2, and x3, respectively,
and where it is assumed that fluctuations of ∆Φ, s1 and s2 are independent, such that the joint PDF
represents just a product of all corresponding PDFs: f∆Φfs1 fs2 . The integration area is defined
now by the inequality x2 + x3 + 2η

√x2x3 cos x1 < y. Note also that fluctuations of η are neglected
in Eq. (7). Finally, the resulting PDF of the interference signal is determined by a derivative
of the CDF: fS̃ = F′

S̃
. Unfortunately, the integral in Eq. (7) cannot be calculated analytically;

therefore, Monte Carlo simulations are usually used to find fS̃.
It seems reasonable to consider fluctuations of s1 and s2 as a Gaussian noise. Since this noise

is related to the pump current fluctuations, it should be referred to as classical. Monte-Carlo
simulations for the case when fs1 and fs2 are Gaussian with s̄1 = s̄2 = 1, whereas f∆Φ is defined by
Eq. (2), are shown in Fig. 1(b). One can see from the figure that the PDF exhibits noticeable
asymmetry: the left maximum is much higher and “thinner” than the right one. This feature is
due to fluctuations of normalized amplitudes s1 and s2 and it becomes more pronounced when
increasing the rms value of these fluctuations. Note that the normalized rms value of the output
laser power fluctuations σs was usually measured to be 4-6% of the pulse average power, so the
value σs1 = σs2 = 0.05 was used in simulations shown in Figs. 1(b,c).

In a real experiment, the PDF of the interference signal is additionally “broadened” due to
noises in the photodetector. An experimental signal should be thus written in the following form:

S̃→ S̃ + ζ , (8)

where ζ is the photodetector’s Gaussian classical noise. Simulations of fS̃ in the presence of
fluctuations of s1, s2 and the photodetector’s noise as well (the rms of the photodetector noise
was put to σζ = 0.1) are shown in Fig. 1(c).
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It should be noted that the laser pulse interference could have another features, which adversely
affect the visibility and have an impact on the appearance of the PDF of the random interference
signal. Thus, we did not yet consider the influence of chirp and jitter, whose combined effect
in the context of QRNG was considered in [12], where authors demonstrated that the PDF of
the interference signal for chirped laser pulses differs markedly from the PDF measured in the
absence of chirp. It is well-known that Gaussian laser pulses exhibit linear chirp [19], such that
the time dependence of the electric field of the pulse is proportional to exp[i(ω0t − βt2)], where
ω0 is the central frequency of the laser field and the linear chirp coefficient is β = α

/
2w2, where

w is the rms width of the laser pulse and α is the linewidth enhancement factor (the Henry factor
[10]). The visibility of the integrated interference signal in Eq. (1) is now defined by [28]

η = e−
(1+α2)∆t2

8w2 , (9)

where ∆t is the inaccuracy of pulse overlap, which fluctuates due to jitter. Therefore, Eq. (7)
should be supplemented by the jitter PDF f∆t, which is usually assumed to be Gaussian.
Monte-Carlo simulations of fS̃ taking into account the influence of the “linear chirp+ jitter”

effect are shown in Fig. 2. For simulations, we used Eq. (1) with the visibility η defined by Eq. (9),
where we put α = 6 and w = 50 ps. Fluctuations of s1 and s2 were again assumed to be Gaussian
with s̄1 = s̄2 = 1 and σs1 = σs2 = 0.05, f∆Φ was defined by Eq. (2) and the photodetector noise
was introduced according to Eq. (8) with σζ = 0.1. The jitter was assumed to exhibit Gaussian
PDF with the rms from 0 to 20 ps and with mean value equal to zero. One can see that the jitter
with σ∆t > 10 ps markedly affects the form of the signal PDF leading to the appearance of the
central peak, which indicates an increase in the probability that the signal equals to S̃ = s1 + s2,
which is the evidence of interference worsening. However, at small σ∆t (or, equivalently, at
small α) the influence of the “linear chirp+ jitter” effect on the PDF is insignificant (compare
PDFs on Fig. 2 at σ∆t = 0 and σ∆t = 5 ps), such that one can neglect it. Moreover, the “linear
chirp+ jitter” effect can be reduced by cutting off the high-frequency and low-frequency parts of
the laser spectrum with the bandpass filter. This is the consequence of the fact that the spectrum
of the chirped Gaussian laser pulse exhibits inhomogeneous broadening in addition to broadening
associated with a finite pulse duration. The spectral filtering changes the intensity distribution of
spectral components in the pulse making it effectively less chirped.

Fig. 2. Monte-Carlo simulations of the signal PDF taking into account the influence of the
“linear chirp+ jitter” effect. The values of the jitter rms are shown on the corresponding
simulations.

A more complicated picture takes place when the laser pulse is distorted by relaxation
oscillations, since the chirp is not linear in this case. A more detailed study of this issue,
particularly the influence of chirp, jitter and relaxation oscillations on laser pulse interference we
consider elsewhere [29], showing that the combined effect of chirp and jitter can be decreased
even in this case by cutting off only the high-frequency part of the laser spectrum with the
bandpass filter. Thus, we will assume below that the “chirp+ jitter” effect is decreased to be
small enough, such that the visibility η is not significantly changed from one pair of pulses to
another and we can treat it as a non-fluctuating parameter.
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The key to separate quantum and classical noises is the comparison of functions fS̃ and f Q
S̃
.

Obviously, the more these functions are different from each other, the greater the contribution
of classical fluctuations. In the next section, we describe a method to calculate the so-called
quantum reduction factor, which in a sense determines the quantum-to-classical noise ratio in
the assumption of Gaussian classical noises. As the main sources of classical noise, we will
consider the photodetector noise and fluctuations of the laser output power (the latter correspond
to fluctuations of quantities s1 and s2). In view of the above, fluctuations of the visibility η and
corresponding impact of jitter will be neglected. We will further restrict our consideration to the
case when an adversary can influence only the part of the classical noise, which is related to the
photodetector. It means that if the magnitude of the classical noise in the QRNG system varies
with time, this variation can be mainly attributed to the photodetector and a possible influence
of an attacker on it. This does not mean, however, that under this assumption we exclude from
consideration another part of the classical noise related to fluctuations of the laser output power.
The latter will still be included in the model by Eq. (7) and thus will make its impact into the
quantum reduction factor. The only assumption is that the magnitude of this part of the classical
noise, i.e. the values of σs1 , σs2 , will be assumed to be fixed.

4. Quantum reduction factor

As we mentioned in the Introduction, quantum and classical noises can be “separated” at the
post-processing stage. In fact, it can be formally assumed that the output random sequence may
contain correlations associated not only with non-uniformity of the digitized signal, but also
with the contribution from the classical noise. This means that the randomness extraction (RE)
procedure should be carried out taking into account the ratio between quantum and classical
noises.
The RE procedure can be considered as some operation that transforms a binary sequence
{0, 1}l of length l with non-uniform distribution of elements into a binary sequence {0, 1}m of
length m, where distribution of elements is close to uniform. The length of the binary sequence
with improved randomness is generally shorter: m < l. With such a definition, the RE procedure
can be treated as a reduction of a raw random bit sequence: {0, 1}l RE

−→ {0, 1}m, and a ratio
γ = l/m is sometimes referred to as a reduction factor. In conventional RE procedures, the
reduction factor γ is estimated via the min-entropy H∞ of the raw sequence. Thus, a perfect
randomness extractor applied to a non-uniform random sequence {X1,X2, . . . ,XN} with N >> 1,
where each Xi is an n-bit word, could provide NH∞ almost uniformly distributed bits [17], i.e.
the raw sequence will be reduced with such an extractor by a factor of γ = nN/NH∞ = n/H∞.
The min-entropy, in turn, is defined as H∞ = −log2pmax, where pmax is the highest probability to
guess a random element from the sequence {X1,X2, . . . ,XN}. If the random signal is digitized by
an ADC, then n in the definition of γ corresponds to the resolution of the ADC in bits, whereas
pmax corresponds to the probability of the most likely bin. If the digitization is performed using a
comparator (n = 1), then the reduction factor is determined as γ = 1/H∞. If, in addition, the
comparator threshold is chosen such that probabilities of ‘1’s and ‘0’s in the QRNG’s output
are equal, then H∞ = 1 and the reduction factor is γ = 1, i.e., a raw random sequence could be
employed. Obviously, such a result contradicts physical considerations, since the classical noise
introduced by the photodetector and other devices included in the QRNG cannot be generally
neglected, so the raw random bit sequence should be subject to reduction anyway. Therefore, the
reduction factor should be redefined to take into account classical noises.

It seems that there is no universal way to estimate contributions of classical and quantum noises
to laser pulse interference. One can see from Fig. 2 that the “chirp+ jitter” effect complicates the
appearance of the signal PDF and it is not obvious how to compare functions fS̃ and f Q

S̃
, when fS̃

exhibit significant central peak (see Fig. 2 on the right). As we already agreed, we will neglect the
influence of the “chirp+ jitter” effect on the signal PDF and will consider the photodetector noise
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and fluctuations of the laser output power as the main sources of the classical noise. Assuming
further that the interference signal is digitized with the comparator, we can quite easily estimate
the contribution of classical fluctuations.
One can see from Fig. 1 that the Gaussian noise broadens the PDF of the interference signal,

such that the probability for the signal to fall in the region between S̃min and S̃max decreases
when increasing the rms of the photodetector noise. We can thus say that an additional classical
entropy “flows” into the [S̃min, S̃max] interval. Let us agree that if the contributions of classical
and quantum noises are equal in this interval, we will not trust the resulting random sequence at
all (even if it passes all randomness tests!) and require the reduction factor to be made infinitely
large. (We will discuss such an assumption below.) In contrast, if the contribution of classical
noises is negligibly small, then the reduction factor can be put to unity (note that this assumption
is valid only for the case of a comparator with a properly chosen threshold). Such a reduction
factor that takes into account the contribution of classical noise and allows extracting pure
quantum randomness we will refer to as a quantum reduction factor Γ. Let us now find the
relation between Γ and the min-entropy.

In the ideal case, when the classical contribution is absent, the comparator threshold voltage (or
rather its normalized value) should be obviously set to Vth = S̃min + w∆Φ/2, and the min-entropy
can be written as follows:

HQ
∞ = −log2

©­­«
S̃min+w∆Φ/ 2∫

S̃min

f Q
S̃
(x)dx

ª®®¬ = 1, (10)

where the integral in parentheses corresponds obviously to pmax. We will refer HQ
∞ to as a

quantum min-entropy. The min-entropy in the presence of classical noise we define in a similar
way:

H∞ = −log2
©­­«

S̃min+w∆Φ/ 2∫
S̃min

fS̃(x)dx
ª®®¬ ≥ 1. (11)

Following the above agreement, we will assume that if H∞ is twice HQ
∞, then Γ→∞. If, however,

H∞ → HQ
∞, then Γ → γ = 1/H∞. Obviously, both requirements are satisfied, if the quantum

reduction factor is defined as follows:

Γ =
1

2 − H∞
. (12)

It is obvious from the above that H∞ ≥ HQ
∞ and, consequently, Γ ≥ γ, and the equality holds in

the absence of classical noises. Thereby, the reduction factor γ determines the non-uniformity
degree of a random sequence, but it does not take into account the contribution of classical
noise. The quantum reduction factor Γ, in turn, takes into account both effects and thus allows
estimating the length of the random bit sequence returned by the RE algorithm, which will be
guaranteed to have a quantum nature.

The theoretical dependence of the quantum reduction factor Γ on the photodetector noise rms
σζ is shown in Fig. 2(a) on the left. The simulations of the integral interference signal S̃ PDF
corresponding to three different values of σζ are shown on the right. It was assumed in the
simulations that the photodetector noise is included in S̃ according to Eq. (8); the fluctuations
of s1 and s2 were again assumed to be Gaussian with s̄1 = s̄2 = 1 and σs1 = σs2 = 0.05. The
selected points on the curve Γ(σζ ) are connected by arrows with the corresponding theoretical
PDFs. One can see that Γ grows with the growth of σζ , since the proportion of the noise, which
may be compromised by the adversary, increases.
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One should remember that Γ depends also on σs1 and σs2 , which are assumed to be fixed in
the present consideration. Assuming that σs1 = σs2 = σs we may write for a more general case
Γ = Γ(σζ ,σs), such that the quantum reduction factor can be presented as a 2D surface or as a
set of Γ(σζ ) curves corresponding to different magnitudes of laser pulse fluctuations. We will
not consider this case here.
There is a certain arbitrariness in the definition of the quantum reduction factor given by

Eq. (12). In fact, we demand that Γ should be put to infinity when the contributions of classical
and quantum noises are the same. Probably, such a requirement is overly rigid, but it guarantees
that the random sequence resulting from the RE procedure with such a reduction factor will
indeed have a quantum nature. We use the min-entropy as a measure to compare quantum and
classical noises not only because H∞ is used in the definition of γ, but also because such a choice
seems very natural. Indeed, we do not trust the noise, if the probability for the signal S̃ to fall into
the interval from S̃min to w∆Θ/2 is changed from 1/2 to 1/4, i.e. when the min-entropy doubles.
In this case, the probability of a ‘0’ or ‘1’ is equally related to both quantum and classical effects,
i.e. quantum and classical noises become in a sense indistinguishable.
This interpretation can be expanded for the case n > 1, i.e. when an ADC is used for the

digitization. Let us again require the quantum reduction factor to become infinitely large when
the probability pmax of the most likely bin is halved due to classical noise contribution. We define
this probability now as follows:

pmax =

S̃min+∆u∫
S̃min

f Q
S̃
(x)dx, (13)

with the bin size ∆u = ∆U/2n, where ∆U is the dynamic range of the ADC, and where we use
the fact that f Q

S̃
(x) behaves asymptotically near S̃min. The quantum min-entropy is obviously

defined as HQ
∞ = −log2pmax, whereas the value of the min-entropy, at which Γ → ∞, is

−log2(pmax/2) = 1 + HQ
∞. So, we can define the quantum reduction factor as follows:

Γ =
n

1 + HQ
∞ − H∞

, (14)

where similar to Eq. (11)

H∞ = −log2
©­­«

S̃min+∆u∫
S̃min

fS̃(x)dx
ª®®¬ (15)

and HQ
∞ is defined accordingly, but with f Q

S̃
in the integral. One can see that with such a definition

Eq. (12) becomes an extreme case of Eq. (14) at n = 1, if ∆u is treated as w∆Φ/2.

5. QRNG implementation

The schematic diagram of our QRNG is shown in Fig. 3(a). The optical scheme depicted by the
dashed rectangle includes generally two principal elements: the fiber optic interferometer (it is
an unbalanced Michelson interferometer in our case) and the photodetector. Note that the optical
scheme in Fig. 3(a) may generally refer to any scheme that allows implementing the interference
of laser pulses. Optical pulses are generated by the distributed feedback laser modulated over
threshold with the frequency 2.5 GHz by a laser diode driver. To digitize the photodetector signal
we propose to use the set of three high-speed comparators. The comparator C0 is needed to find
the PDF of the interference signal, whereas the comparators C1 and C2 work in parallel acquiring
the signal from the photodetector and providing the digital output. Obtained random bits are
received by the field-programmable gate array (FPGA) for buffering and further processing.
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Fig. 3. (a) The theoretical dependence of the quantum reduction factor Γ on the photodetector
noise width σζ in case of digitization of the interference signal by the comparator. Monte-
Carlo simulations of the PDF of the interference signal S̃ corresponding to the three different
values of σζ are shown to the right of the curve. (b) The theoretical dependence of
the quantum reduction factor Γ on the PDF broadening factor B = W

/
(S̃2 − S̃1). (c)

Experimental PDF of the interference signal.

To determine the signal PDF, we propose to sweep the comparator C0 threshold voltage, V0
th,

recording a random bit sequence of a specified length for each value of V0
th and calculating then

the corresponding ratio of ones and zeroes in the current sequence: R = Nones/Nzeroes. One can
then restore the value of the signal PDF corresponding to the i-th value of V0

th using the following
relation:

f i
S̃ =

|Ri − Ri+1 |

∆V(1 + Ri + Ri+1 + RiRi+1)
, (16)

where ∆V is the voltage sweep step. Note that throughout the article by photodetector or
comparator voltage we mean dimensionless quantity related to the normalized signal S̃ and not to
the signal in volts.
Generally, only a single comparator, C1 or C2, is needed to obtain a random output, so let

us assume for now that only one of them is used. The purpose of the second comparator will
be clarified shortly. By definition, if the photodetector signal exceeds the threshold voltage
of the comparator, the latter outputs a logical one, otherwise the signal from the comparator
corresponds to a logical zero. The threshold voltage should be chosen so that the ratio of the
number of ones to the number of zeros in the output random sequence was close to unity. Since
we know the signal PDF fS̃ found with the comparator C0, we can calculate the threshold voltage
by defining it such that the areas under fS̃ left and right of the threshold were equal.
Using an arrangement with a single working comparator, we acquired the 1Mbit random

sequences. The data were then extracted from the FPGA buffer and stored as binary files on the
PC. All of them successfully passed all NIST tests [30]. The result of the NIST statistical suite
for one of the obtained sequences is shown in Fig. 4(b).

As mentioned above, the raw random bit sequences cannot be employed despite the successful
randomness tests, since the raw signal is “diluted” by the classical noise. So, these sequences
should be subject to randomness extraction procedure and thus the quantum reduction factor
should be calculated. Unfortunately, the formulas for Γ given above cannot be applied directly,
since the calculation of H∞ with Eq. (11) requires the knowledge of S̃min, which defines the
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Fig. 4. (a) The schematic diagram of the QRNG: C0, C1, and C2 are high-speed comparators,
LD is the laser diode,V1

th andV2
th in the inset stand for the threshold voltages of the comparators

C1 and C2, respectively. (b) The result of the NIST statistical suite for one of the obtained
raw random bit sequences. To pass the test we imposed the condition:p-Value ≥ 0.01.

integration limits. Obviously, one cannot calculate S̃min knowing only fS̃; therefore, other approach
should be used.

One of the possible methods is the substitution of S̃min by the value of the normalized integral
signal S̃1 corresponding to the left maximum of the PDF. In fact, one can see from Fig. 3(a)
that S̃1 is quite close to the left asymptote of f Q

S̃
(i.e. to S̃min), if the classical Gaussian noise

is quite small. However, this maximum shifts to the right when increasing the classical noise
contribution, which obviously overestimates the value of Γ. In fact, this method applied to the
experimental PDF shown in Fig. 3(c) provides Γ = 2.23, which is unreasonably high.

Alternatively, one can use the fact that the PDF becomes broader when increasing the classical
noise. For definiteness, we will assume that the width W of the distribution fS̃ corresponds to
the range, where fS̃ > 10−5 (see Fig. 3(a)). Note that this choice is arbitrary, and with the same
success one could take, e.g., fS̃ > 10−4; however, this will obviously change abscissa values in
Fig. 3(b). Therefore, it is important to choose the same assignation for both theoretical and
experimental PDFs when calculating W. The “distance” between its maxima, in turn, decreases,
so we can introduce the dimensionless quantity B = W

/
(S̃2 − S̃1), which reflects the contribution

of classical noises. Here, S̃1 and S̃2 stand for the values of the integral signal, corresponding to
the left and right maximum of fS̃, respectively (see Fig. 3(a)). The dependence Γ(σζ ) can be thus
substituted by the dependence Γ(B), which is shown in Fig. 3(b). The main advantage of this
representation is that B does not depend explicitly on H∞ and can be easily calculated from the
experimental PDF. The value of Γ can be then easily found from Fig. 3(b). We estimated the
experimental value of the broadening factor to be B = 1.77, which provides Γ = 1.25. Comparing
the PDF shown in Fig. 3(a) in the middle (it corresponds to Γ ≈ 1.25) with the experimental one
shown in Fig. 3(c), it becomes obvious that this estimate is more reasonable. So, after the RE
procedure (we used hashing) the raw random sequence is reduced by a factor 1.25 resulting in
the random bit generation rate of 2 Gbps.

Finally, let us consider the role of the comparators C1 and C2 and show how the quantum noise
can be extracted without post-processing. Note that if the photodetector signal falls near the
center of the PDF, i.e. if the photodetector output is close to the comparator threshold, then there
is a high probability that the resulting bit is forged by an intruder. In fact, in this case an adversary
could “toss” the output left and right of the threshold using his influence on the classical noise.
Therefore, one should discard signals corresponding to some region near Vth in order to avoid
intrusion of an adversary. The width of such a region should be guaranteed to be larger than
the width of classical fluctuations. Discarding untrusted bits is analogous to the reduction of
the output sequence, so the width of the “untrusted region” should be related to the value of the
quantum reduction factor Γ. Denoting the area under fS̃ between the boundaries of the untrusted
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region as P and taking into account that the remaining area is 1 − P, we can define the quantum
reduction factor as follows: Γ = 1/ (1 − P). The value of P, in turn, can be defined by the integral

P =

Vth+∆V2
Γ∫

Vth−∆V1
Γ

fS̃(x)dx, (17)

where ∆V1
Γ
and ∆V2

Γ
are “untrusted intervals” left and right of the threshold. One can see from

Fig. 3 that the PDF is quite symmetric in the vicinity of Vth, so one can put ∆V1
Γ
= ∆V2

Γ
= ∆VΓ

and using the definition of Γ in terms of P write the following relation:

Vth+∆VΓ∫
Vth

fS̃(x)dx =
Γ − 1
2Γ

, (18)

which defines the interval ∆VΓ.
Afterall, the threshold voltages of the comparators C1 and C2 are set to V1

th = Vth − ∆VΓ and
V2

th = Vth + ∆VΓ, respectively. The digital output from the two comparators should be then added
modulo 2. Let us denote the output of the comparators C1 and C2 as c1 and c2, respectively. If
c1 ⊕ c2 = 0, then the FPGA buffers c1 or c2 (either one of them, since they are the same in this
case). If, however, c1 ⊕ c2 = 1, then nothing is written to the buffer (see the inset in Fig. 3(a)).
So, discarding the signal that falls into the range from Vth − ∆VΓ to Vth + ∆VΓ, we improve
the reliability of the random bit sequence. This method can be thus considered as a hardware
quantum randomness extractor.
Let us summarize the working process of the QRNG presented in Fig. 4(a). We assume first

that the laser continuously generates short pulses at 2.5GHz repetition rate. The working cycle of
the QRNG starts with the calculation of fS̃ with the comparator C0 using Eq. (16). For this, one
should specify the step ∆V of the threshold voltage sweep and the number of bits that will be
used to find ratio of ones and zeroes at each value of V0

th. Calculated density distribution is then
saved as an array in the memory. Then the threshold Vth is calculated such that the areas under fS̃
left and right of Vth were equal. Then the PDF broadening factor B is calculated and the quantum
reduction factor Γ is determined from the theoretical dependence Γ(B). Knowing Γ and Vth the
system calculates ∆VΓ with Eq. (18) and sets threshold voltages for the comparators C1 and C2.
In parallel, the system again starts calculating fS̃, Vth and Γ performing thus the on-the-fly control
of the QRNG operation. Afterwards, the FPGA starts buffering random bits checking for each
sample the result of the XOR operation of the digital signals from the comparators and discarding
the samples for which c1 ⊕ c2 = 1.
Note that the embodiment of the QRNG with a single working comparator, where the post-

processing is employed, is somewhat equivalent to the implementation with the two comparators
C1 and C2, where the hardware quantum randomness extraction is performed. However, due to
its simplicity, the latter seems to us more preferable. Note also that the raw random bit sequences
were already “random enough” to pass the statistical tests, so processed sequences obviously
pass them too; therefore, we do not present the results of the tests here.
It is important to mention that despite the ideological similarity between the post-processing

procedure and the hardware quantum randomness extraction presented here, they do different
jobs. Conventional randomness extractors assume that the pseudorandom sequence is somehow
correlated, and these correlations are removed with the use of, e.g., cryptographic hash-functions,
which transform the raw sequence such that it becomes unrecognizable. The quantum randomness
extraction procedure developed here assumes that quantum noise is truly random by default, but
the whole noise of the system is contaminated by classical noise, which could be (albeit not
necessarily) correlated. In contrast to hashing, the proposed hardware quantum noise “extractor”
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does not remove correlations from the bit sequence but eliminates the contribution of classical
noise. Acquired random bit sequence is then assumed to be related to the pure quantum noise
and thus considered to be perfectly random. If we compare the raw sequence and the sequence
obtained after our extractor, they will be very similar, with the only difference being that some
bits in the “pure quantum” sequence will be skipped. Therefore, it is not quite correct to compare
the hardware “extractor” reported here with conventional randomness extractors developed for
pseudo-random numbers in terms of latency, usability or speed. The only common feature
between them is the measure of reduction of the raw sequence length, which is defined by the
quantum reduction factor Γ. Note also, that the proposed hardware quantum noise extractor was
defined only for the scheme with the comparator. For the scheme with an ADC, the method
described above is not applicable, since one cannot just “cut off” the center of the signal PDF in
this case.

6. Conclusions

We demonstrated a simple method of quantum noise extraction from the interference of laser
pulses. The developed approach is based on the calculation of the quantum reduction factor Γ,
which allows determining the contributions of quantum and classical noises in the assumption
that classical fluctuations exhibit Gaussian PDF. To the best of our knowledge, the concept of the
quantum reduction factor is introduced for the first time. It was shown how to calculate Γ for the
case, when an ADC is used to digitize the signal, as well as for the case when the comparator is
used for the digitization.
A robust scheme of the QRNG with the random bit generation rate of 2 Gbps was proposed.

We developed a method for the on-the-fly control of the QRNG operation based on the continuous
calculation of the signal PDF followed by the hardware randomness extraction. Due to its
simplicity, the proposed randomness extraction procedure seems to be a good alternative to
conventional post-processing procedures employing cryptographic hash-functions, Toeplitz
extractors, etc.

Appendix

As we mentioned in the main text, semiconductor laser phase fluctuations are well described by
the Langevin equations in terms of phase diffusion [11]. The random phases of laser pulses ϕp
can be assumed to be distributed according to the normal law with an rms of σϕ , whereas the
phase difference ∆ϕp between the two different laser pulses also has a normal PDF with an rms
to be σ∆Φ = σϕ

√
2. The PDF of the phase difference ∆Φ = ∆ϕp + ∆θ may be then written in the

following form

f∆Φ(x) =
1

σ∆Φ
√
2π

exp

(
−
(x − ∆θ)2

2σ2
∆Φ

)
. (19)

Since ∆Φ is in the argument of the cosine (Eq. (1) in the main text), then taking into account that
the value of cos(∆Φ) will not change neither after the substitution ∆Φ→ ∆Φ + 2πj (j is integer)
nor after the change of the sign ∆Φ→ −∆Φ, we can write f∆Φ as follows:

f∆Φ(x) ↔


∑

p=±1

∞∑
j=−∞

f∆Φ(px + 2πj), x ∈ [0, π)

0, x < [0, π)
, (20)

whence

f∆Φ(x) =
J
(

x
2 −

∆θ
2 , e−σ

2
∆ϕ

/
2
)
+ J

(
x
2 +

∆θ
2 , e−σ

2
∆ϕ

/
2
)

2π
, (21)
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where J(u, q) is the Jacobi theta function:

J(u, q) = 1 + 2
∞∑

j=1
qj2 cos(2ju). (22)

Since in our case q < 1, the series in (22) rapidly converges, so the value of the theta function
can be estimated with the use of just the two first terms:

J(u, q) = 1 + 2q cos 2u. (23)

It is obvious from Eq. (23) that the deviation of J(u, q) from unity is determined by the factor
2q = 2 exp(−σ2

∆Φ

/
2). Already at σ2

∆Φ
= (2π)2 we have 2q ∼ 10−8, so one can assume with great

accuracy that

f∆Φ =


1
π , ∆Φ ∈ [0, π)

0, ∆Φ < [0, π)
, (24)

if σ∆Φ = σϕ
√
2 > 2π.
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