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Abstract: Random numbers are essential for applications ranging
from secure communications to numerical simulation and quantitative
finance. Algorithms can rapidly produce pseudo-random outcomes, series
of numbers that mimic most properties of true random numbers while
quantum random number generators (QRNGs) exploit intrinsic quantum
randomness to produce true random numbers. Single-photon QRNGs are
conceptually simple but produce few random bits per detection. In contrast,
vacuum fluctuations are a vast resource for QRNGs: they are broad-band
and thus can encode many random bits per second. Direct recording of
vacuum fluctuations is possible, but requires shot-noise-limited detectors,
at the cost of bandwidth. We demonstrate efficient conversion of vacuum
fluctuations to true random bits using optical amplification of vacuum
and interferometry. Using commercially-available optical components we
demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has
the potential to be extended to 10 Gbps and even up to 100 Gbps by taking
advantage of high speed modulation sources and detectors for optical fiber
telecommunication devices.
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1. Introduction

Theneed for random numbers in research and technology was recognized very early [1], and
has motivated electronic and photonic advances [2–4]. Random numbers support critical activ-
ities in advanced economies, including secure communications [5–7], numerical simulation [8]
and quantitative finance [9]. For this reason, there has been intense effort to develop practical
true random number generators, to replace existing pseudo-random methods. QRNGs employ a
true source of randomness known to science, the randomness embedded into quantum physics.
Recently, it has been shown that quantum physics also can be used to verify the randomness of
entanglement-based generators [10].

Examples of demonstrated QRNGs include two-path splitting of single photons [11], photon-
number path entanglement [12], time of generation or counting of photons [13–17], fluctuations
of the vacuum state using homodyne detection techniques [18, 19] as well as interferometric
schemes [20–22].

Although any quantum measurement provides some randomness, a practical source must
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be simultaneously fast, inexpensive, and robust. For this purpose, fluctuations of the quan-
tum vacuum are very attractive because the electric field amplitude is a continuous quantity,
a single measurement can yield many true random bits. True vacuum is also perfectly white,
uncorrelated, and broadband; the quantum field renews its random value arbitrarily quickly.
Guaranteeing true vacuum is far from trivial, however; any scattered light will contribute a
non-random component to the field measurement. Here we demonstrate extraction of random
bits from vacuum using optical amplification. In contrast to homodyne detection [18, 19, 23],
the method guarantees that the signals originate in vacuum noise, and at the same time achieves
high bandwidths, because the requirement for shot-noise-limited detection is removed.

Relative to demonstrated methods for QRNG and achieved speeds, our proposed device is
not only highly integrated, using commercially available components, but also has other advan-
tages. In particular, the strong current modulation, well above and below threshold, ensures true
randomness from vacuum. This active gain control allows a single device to have both a short
coherence time, for rapid extraction of uncorrelated random bits, and a high signal level. In this
way, standard photodiodes can be used. Furthermore, due to the high power of the signal pulses,
the signal-to-noise ratio (SNR) is high. Hence, several random bits per detection event can be
generated, limited by the classical noise of the measurement equipment. To our knowledge, it
is the first time that our use of current gain modulation is used in QRNG.

2. Device operation

We use a distributed feedback (DFB) laser diode (LD) as the oscillator, providing single-mode
operation and high modulation bandwidth. The DFB LD is directly modulated at around 100
MHz by a train of∼ 1 ns electrical pulses, as shown in Fig. 1(a). A polarization-maintaining,
all-fiber unbalanced Mach-Zehnder interferometer (MZI) with a relative delay oftloop ≈ 10 ns
provides stable single-mode operation of the interferometer, as shown in Fig. 1(b).

The LD is set with 25 mA DC bias current, far below its threshold value of 36 mA. Phase-
randomized coherent optical pulses of 400 ps time width and 3.5 mW peak power are produced.
A 30 dB optical isolator (OI) is placed just after the LD to avoid back reflections into the oscil-
lator cavity. Then, the linearly polarized optical pulses are split in power using a polarization
maintaining coupler (PMC) with a fixed coupling ratio. In one of the output ports of the PMC,
a 2 m polarization maintaining fiber (PMF) patchcord is connected, which corresponds approx-
imately to the equivalent length of the PRF. Both arms of the interferometer are connected to
a second PMC where the interference between pulses takes place. The overall interferometer
setup, at the output, has power coupling ratios ofT2

12 ≈ 49.8% andR2
12 ≈ 40.3%, and polar-

ization isolation of 23.98 dB and 25.23 dB for the two arms. At one of the output ports of the
interferometer, a 150 MHz photodiode is connected to collect the different interfering optical
pulses which are processed by a fast oscilloscope. The oscilloscope is operated with a 200 MHz
bandwidth for the input channel, triggered by the system clock reference.

The path delay difference of the interferometer can be adjusted to temporally overlap sub-
sequent pulses. On the one hand, the time delay between interfering pulses can be controlled
by fine tunning the propagation properties of the long arm of the interferometer to change the
parameterφloop. For instance, by changing the temperature of the optical fiber one can produce
a refractive index change and also thermal expansion of a wavelength for a 0.03°C tempera-
ture change, corresponding to 4.25 fs. Albeit, the time adjustment range achievable is limited
compared to the pulse repetition period∼ 10 ns. On the other hand, the interferometer can be
temperature stabilized to 0.01°C to keep the parameterφloop and the PRF changed to increase
or decrease the time between successive pulses. The time delay difference between both arms
of the MZI is related to the PRF as∆t = 1/PRF, which allows an accurate and larger time ad-
justment range. The path delay difference of the interferometer was adjusted by setting the PRF
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(a) Electricaland optical pulse trains generated.

(b) Device optical scheme.

Fig. 1. Unbalanced Mach-Zehnder interferometer. Due to the random phase of the different
input pulses, the output signals acquire random amplitudes. (a) Measured drive current (red,
upper curve) and detected laser power (blue, lower curve), showing amplitude repeatability
and clear pulse separation. (b) (LD Pulse Driver) denotes the electrical pulse generator
to directly modulate the laser, (LD) laser diode, (OI) optical isolator, (PMF) polarization
maintaining fiber, (φ0−3) optical phases of different consecutive pulses, (PMC) polarization
maintaining coupler, (φloop) phase introduced by the delay line and (PIN) fast photodiode.

at 97.6 MHz.

3. Laser physics analysis

The method operates on the field within a single mode of a semiconductor diode laser. As shown
in Fig. 2, the laser is first operated far below threshold, producing simultaneously strong atten-
uation of the cavity field and input of amplified spontaneous emission (ASE). This attenuates
to a negligible level any prior coherence, while the ASE, itself a product of vacuum fluctu-
ations, contributes a masking field with a true random phase. The laser is then briefly taken
above threshold, to rapidly amplify the cavity field to a macroscopic level. The amplification is
electrically-pumped and thus phase-independent. Due to gain saturation, the resulting field has
a predictable amplitude but a true random phase. The cycle is repeated, producing a stream of
phase-randomized, nearly identical optical pulses. As shown in Fig. 1(b), interference of sub-
sequent pulses converts the phase randomness into a stream of pulses with random energies,
which is directly detected and digitized.

During the attenuation phase, the cavity field is described by the Langevin equation:

d
dt

a = −iωa− 1
2

γa+Γ, (1)
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Fig. 2. Generation of amplified vacuum within the laser cavity. (a) The LD is first taken
below threshold, to attenuate the cavity field to a weak thermal state (in red), independent
of its previous value (in blue). (b) The LD is then taken above threshold, so that phase-
insensitive amplification brings the field amplitude|α | to a level fixed by saturation, while
the phase retains the random thermal-state value.

wherea is the field operator for the mode,ω is its angular frequency,γ is the (energy) decay
rate andΓ = γ1/2ares+ ΓASE is a noise operator, withares a reservoir mode. The first term is
from attenuation [24], and the second from ASE. We can estimateγ = γcav+ γmat as follows:
The cavity contribution isγcav=−cln(R)/(2nL) = 5×1010 s−1, wherec is the speed of light in
vacuum,R= 0.3 is the out-coupler reflectivity,n= 3.6 is the refractive index, andL = 300µm is
the cavity length. The material contributionγmat ranges fromcα/n≈ 1011 s−1 at zero current to
γmat=−γcav at threshold. Hereα ≈ 104cm−1 is the intrinsic absorption of GaAs at 852nm [25].
Interpolating, at 70% threshold current, we obtainγ ≈ 1011 s−1, or about 400 dB/ns. This
renders completely negligible any prior coherence in the cavity, and the remaining field is an
equilibrium between ASE and attenuation. The phase of this field is a true quantum random
variable, its value determined by ASE which is driven by vacuum fluctuations. When the laser
is taken above threshold, the equilibrated field is amplified, limited by gain depletion [26], to
produce observed output powers ofP≈ 3.5 mW or 1.5×107 photons/ns, with aboutP/γcav≈
3×105 photons in the cavity. The amplification is phase-insensitive, and the phase of the cavity
field remains truly random.

Considering the speed limits of this technique, we note that even at a modulation rate of
20 GHz, i.e., an attenuation time of∼ 0.25 ns, the attenuation is 100 dB. The field contribu-
tion remaining from the previous pulse is 3× 10−5 photons, or≈ 15 bits below the vacuum
fluctuations. The physics of the process can thus support QRNG rates in excess of 100 Gbps.

4. Characterization of the coherence of the laser pulses

The interferometric setup allows us to determine the first order coherence properties of the laser
pulses, described by the correlation functionsG(τ)≡ ∫

dt 〈 Ê(−)(t)Ê(+)(t +τ) 〉, or its normal-
ized versiong(τ) ≡ G(τ)/G(0). HereÊ(±) are the positive- and negative-frequency parts of
the emitted fieldÊ and integrals are taken over the duration of the pulse. We expect the pulse
energiesG(0) to be narrowly distributed, andg(trep) to have near-unit magnitude and random
phase, wheretrep corresponds to the time between successive pulses given by the pulse repeti-
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tion frequency (PRF), as subsequent pulses have very similar envelopes and random phasesφ .
The interferometer output iŝEout(t) = T12Ê(t)+ R12Ê(t + tloop) whereT12,R12 indicate com-
bined transmission and reflection coefficients through the two beamsplitters. If we define the
pulse energy in both arms of the interferometer asui ≡R2

12G(0) andvi+1 ≡ T2
12G(0), the energy

at the output port of the interferometer,u(out)
i ≡ ∫

dt 〈 Ê(−)
out (t)Ê

(+)
out (t) 〉i is given by

u(out)
i = ui +vi+1 +2|g(tloop)|

√
uivi+1cos

(

φi −φi+1 −φloop
)

(2)

whereφloop = ωtloop is the phase introduced by the delay loop. We measure the relevant statis-
tics as follows (data shown in Fig. 3(a)): narrow distributions ofui andvi+1 are directly ob-
served by blocking one or the other path. Interference leads to a broadening of the observed
distribution, with the broadest distribution corresponding totrep = tloop. From the width of the

u(out)
i distribution and the mean values ofui ,vi+1, we can estimate the interference visibility
|g(tloop)| ≈ 90.22%. To demonstrate that the laser pulses are phase-uncorrelated, we collect
statistics both forφloop fixed, and forφloop swept over severalπ, obtained by heating the fiber
loop during acquisition. Results, shown in Fig. 3(b), are statistically identical, indicating the
absence of any phase relation between subsequent pulses.
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Fig. 3. Inter-pulse coherence measured by output energy distributions. (a) Distributions

for: individual pulse energiesui ,vi+1, interfering pulse energiesu(out)
i under different PRF

and hence differenttrep. (b) Output pulse energy histogram for delay-loop temperatures of
25 °C (fixed), and 24 °C to 26 °C (scanned). Loop phase has no observable effect on the
distribution, indicating statistical independence of the pulses’ phases.

5. Statistical testing

The output of the PIN photodiode was highpass filtered with a cutoff frequency of 40 MHz
and digitized using the waveform integration function of an oscilloscope with input bandwidth
200 MHz, sampling speed of 2.5 Gsps and a 12-bit analog-to-digital converter (ADC). The 10
ns time range setting, compliant with the PRF, and sampling speed of the oscilloscope permits
to acquire 25 samples over a pulse. The oscilloscope translates the multiple samples per pulse
to a single measurement. The nearly uniform distribution of observed energies permits the
use of equally-sized encoding bins, and facilitates calibration. Records of 106 output pulses
werecollected in order to characterize the statistical correlations of the acquired raw data and
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to determine the number of extractable random bits per pulse. The normalized correlation of
successive samples as a function of sample delay of the raw data is computed as the modulo-
N circular auto-correlation for finite length sequences and it is normalized to the maximum,
shown in Fig. 4(a). The correlation of data samples follows a delta-function like behavior which
indicates a random sequence with low impact of drifts in the system. The quantum random bit
content of the recorded signal is determined as follows: The pulse distribution of Fig. 3 is
divided into 2b equally-sized bins and the Shannon entropy is calculated. As shown in Fig.
4(b), the entropy increases linearly withb, up to the valueb = 12, where it saturates to 11.8
bits of entropy. The same procedure, applied to the detection noise, finds the classical noise
entropy. Subtracting the noise entropy, the quantum optical noise contribution reaches a level
of 11.1 bits per pulse atb = 12. Multiple samples per pulse achieves larger accuracy when
used together with higher resolution ADC. This allows to better bound the contribution of the
classical noise and thus permits to extract more true random bits per pulse.
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Fig. 4. Measured correlation and entropy of acquired pulses. (a) Normalized correlation
of successive samples as a function of sample delay of the raw data. The correlation data
samples follows a delta-function like behavior indicating a random sequence. (b) Total
entropy, calculated from the measured distribution shown in Fig. 3. Distribution is divided
into 2b bins, from which the Shannon entropy is calculated. Optical contribution, up to 11.1
bits per pulse, is found by subtracting entropy of the measured electronic noise.

The observed classical noise, however random it may appear, could in principle be the result
of a completely predictable process. Indeed, randomness tests (described below) detect pat-
terns in the recorded classical noise. To completely remove these patterns, we first note that
the entropy of the classical noise places an upper bound on the information it can contain. We
then remove this quantity of information, using cryptographic hash functions, from the com-
bined quantum and classical noise. We use the Whirlpool hash function [27]; other standard
randomness extractors could have also been employed [28,29]. These cryptographic functions
mix the input data bits, increasing the theoretically secure entropy per bit at the cost of losing
output bits. The reduction factor of the hash function applied to the collected raw bits is 1.08.
As a result, we obtain that the random bit generation rate of the current device accounts to 1.11
Gbps.

We have performed all tests of randomness from TestU01 [30]. Considering the optical pulse
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data set, some test fail when applied to the raw data set, while they were successfully passed
whenapplied to the hashed data set. Confirming that the hashing removes any remaining pre-
dictable behavior and increases the entropy per bit. Instead, the classical noise data set fails
some tests both before and after hashing, using the same hashing factor.

6. Conclusions

In conclusion, we have demonstrated high-bandwidth extraction of random bits from quantum
vacuum fluctuations using optical amplification. The use of strong attenuation followed by am-
plification guarantees that the signal originate from quantum noise, and provides macroscopic
signals compatible with the highest bandwidth detection. With commercially-available compo-
nents, we demonstrate over 1 Gbps true random number generation. The QRNG device is low
power consumption, robust, and can be easily automated allowing it to have a long operational
lifetime. Consideration of the laser physics indicates that rates above 10 Gbps and even 100
Gbps are possible. The high random numbers generation rate extends the practical applications
of our method to erode the dominance of currently used classical RNG choices. The method can
be applied to high speed secure communication, to the gambling industry and to cryptography.
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